Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598852

RESUMEN

Sweet potato (Ipomoea batatas [L.] Lam.) is a versatile crop, cultivated in the subtropical and tropical areas, as food, fodder, and industrial raw material crop. In China, sweet potato has been used as a health-care food in recent years, as it contains a wide range of nutrients and xenobiotic phytochemicals. However, viral diseases are major constraint for the sweet potato yield and quality, especially the seed production and quality. Over 30 species of viruses infect sweet potato worldwide (Clark et al. 2012). More recently, a few new viruses infected sweet potato were identified, such as sweet potato virus E (SPVE), which was reported in Korea(Jo et al. 2020). In May 2022, a sweet potato sample (JSXZ1) with virus-like symptom, such as mosaic and vein clearing were collected from sweet potato germplasm Xuzhou resource nursery, Jiangsu Province, China (N34˚16', E117˚18') (Fig. S1A). To investigate the virus disease, the sample JSXZ1 showing the typical symptoms of disease was prepared for Small-RNA (sRNA) deep-sequencing. The sRNA library was constructed using TruSeq™ Small RNA Sample Prep Kits (Illumina, San Diego, USA) and sequenced using the Illumine Hiseq 2500 platform by LC-Bop Technologies (Hangzhou) CO., LTD. The sample was sequenced to obtain 26, 358, 439 raw reads and 22, 969, 139 clean reads after quality control trimming and analysis. The Velvet 1.0.5 software was used to de novo assemble the clean reads (18 to 28 nt) into larger contigs, which were then compared with the nucleotide sequences in the National Center for Biotechnology Information (NCBI) database using the BLASTn algorithm. Viruses found in the sample were sweet potato latent virus (SPLV), sweet potato feathery mottle virus (SPFMV), sweet potato chlorotic stunt virus (SPCSV), sweet potato badnavirus A (SPBV-A) and sweet potato badnavirus B (SPBV-B). Surprisingly, besides the viruses listed above, 28 contigs matched sequences of SPVE isolate GS (MH388502). To verify the result, total RNA was extracted from the sample JSXZ1 and from other leave samples (JSXZ2-JSXZ5) that contained SPFMV, SPVC, SPLV, SPVG respectively stored in lab using FastPure Universal Plant Total RNA Isolation Kit (Vazyme Biotech Co., LTD, Nanjing, China). cDNA was synthesized using random primer (hexadeoxyribonucleotide mixture; pd(N)6). The cDNA serves as template in PCR using a newly designed primer pairs based on SPVE p1 gene (SPVE-F: 5'- TCACCAAAAAGAATGCTACAAC-3'/SPVE-R: 5'-GAAATCCTCCCACTCTCCATA-3'). An expected ~500-bp PCR fragment was obtained in JSXZ1, while none of the fragment was obtained from JSXZ2-JSXZ5 (Fig. S1B). The PCR fragment was cloned into pMD18-T vector (Takara Bio Inc., Beijing, China) and plasmid DNA from transformed Escherichia coli DH5α cell (n=3) were commercially sequenced by Sangon Biotech (Shanghai) Co., Ltd. The sequences of the three fragment clones we obtained were 100% identical when compared. A BLASTN analysis of the sequences revealed that they are specific to SPVE and shared 98.62% nucleotide identity to SPVE GS isolate (MH388502) and one sequence was submitted to GenBank (Accession number OQ948331). To determine the occurrence of SPVE in infected sweet potato plants, a total of 37 leaves samples with viral symptom collected from Shandong Province (n=6) and Jiangsu Province (n=31) were indexed by RT-PCR as described before. Only 9 (24.3%) out of 37 from Shandong (n=1) and Jiangsu (n=8) were positive to SPVE respectively. In addition, five additional viruses (SPFMV, SPVC, SPVG, SPLV, SPCSV) were detected among these 37 samples and always in a mixed infection of two or more viruses. To our knowledge, this is the first report of SPVE infecting sweet potato in China. Sweet potato is an important crop in China and other countries (Zhang et al. 2023). China is the largest sweet potato producer all over the world. In addition, as sweet potato is produced through the vegetative propagation mode, thus, more attention should be paid to detection and monitoring of occurrence of SPVE in China.

2.
J Agric Food Chem ; 72(3): 1487-1499, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38215405

RESUMEN

Osmotin-like proteins (OLPs) play an important role in host-plant defense. In this study, a novel multiresistant OLP (IbOLP1) was screened from sweetpotato (Ipomoea batatas) with a molecular weight of 26.3 kDa. The expression level of IbOLP1 was significantly higher in resistant cultivars than susceptible ones after inoculation with Ceratocystis fimbriata, which causes black rot disease in sweetpotato. The expression of IbOLP1 in Pichia pastoris led to the lysis of yeast cells themselves. The recombinant IbOLP1 displayed antifungal, antibacterial, and antinematode activity and stability. IbOLP1 could restrain the mycelial growth and lyse spores of C. fimbriata, distinctly reducing the incidence of black rot in sweetpotato. The IbOLP1 can trigger the apoptosis of black rot spores by elevating the intracellular levels of reactive oxygen species. Collectively, these findings suggest that IbOLP1 can be used to develop natural antimicrobial resources instead of chemical agents and generate new, disease-resistant germplasm.


Asunto(s)
Ascomicetos , Ipomoea batatas , Especies Reactivas de Oxígeno , Esporas Fúngicas , Ceratocystis , Ipomoea batatas/microbiología
3.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003642

RESUMEN

Black rot disease, caused by Ceratocystis fimbriata Ellis & Halsted, severely affects both plant growth and post-harvest storage of sweet potatoes. Invertase (INV) enzymes play essential roles in hydrolyzing sucrose into glucose and fructose and participate in the regulation of plant defense responses. However, little is known about the functions of INV in the growth and responses to black rot disease in sweet potato. In this study, we identified and characterized an INV-like gene, named IbINV, from sweet potato. IbINV contained a pectin methylesterase-conserved domain. IbINV transcripts were most abundant in the stem and were significantly induced in response to C. fimbriata, salicylic acid, and jasmonic acid treatments. Overexpressing IbINV in sweet potato (OEV plants) led to vigorous growth and high resistance to black rot disease, while the down-regulation of IbINV by RNA interference (RiV plants) resulted in reduced plant growth and high sensitivity to black rot disease. Furthermore, OEV plants contained a decreased sucrose content and increased hexoses content, which might be responsible for the increased INV activities; not surprisingly, RiV plants showed the opposite effects. Taken together, these results indicate that IbINV positively regulates plant growth and black rot disease resistance in sweet potato, mainly by modulating sugar metabolism.


Asunto(s)
Ascomicetos , Ipomoea batatas , Ascomicetos/fisiología , Ipomoea batatas/genética , Ceratocystis , Sacarosa/farmacología
4.
Plants (Basel) ; 12(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37653969

RESUMEN

Stem nematode disease can seriously reduce the yield of sweet potato (Ipomoea batatas (L.) Lam). To explore resistance mechanism to stem nematode in sweet potato, transcriptomes and metabolomes were sequenced and compared between two sweet potato cultivars, the resistant Zhenghong 22 and susceptible Longshu 9, at different times after stem nematode infection. In the transcriptional regulatory pathway, mitogen-activated protein kinase signaling was initiated in Zhenghong 22 at the early stage of infection to activate genes related to ethylene production. Stem nematode infection in Zhenghong 22 also triggered fatty acid metabolism and the activity of respiratory burst oxidase in the metabolic pathway, which further stimulated the glycolytic and shikimic pathways to provide raw materials for secondary metabolite biosynthesis. An integrated analysis of the secondary metabolic regulation pathway in the resistant cultivar Zhenghong 22 revealed the accumulation of tryptophan, phenylalanine, and tyrosine, leading to increased biosynthesis of phenylpropanoids and salicylic acid and enhanced activity of the alkaloid pathway. Stem nematode infection also activated the biosynthesis of terpenoids, abscisic acid, zeatin, indole, and brassinosteroid, resulting in improved resistance to stem nematode. Finally, analyses of the resistance regulation pathway and a weighted gene co-expression network analysis highlighted the importance of the genes itf14g17940 and itf12g18840, encoding a leucine-rich receptor-like protein and 1-aminocyclopropane-1-carboxylate synthase, respectively. These are candidate target genes for increasing the strength of the defense response. These results provide new ideas and a theoretical basis for understanding the mechanism of resistance to stem nematode in sweet potato.

5.
Opt Express ; 31(19): 30815-30831, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710616

RESUMEN

Metasurfaces are ultra-thin artificial structures capable of flexibly manipulating electromagnetic (EM) waves. Among various applications, phase modulation of electromagnetic (EM) waves using metasurfaces holds great significance. The Pancharatnam-Berry (P-B) metasurfaces provides a complete 2π phase modulation by simply rotating the meta-atom. However, the fixed lattice in rotation employed by traditional P-B metasurfaces often results in unstable amplitude and imprecise P-B phase, leading to performance degradation. In this work, we demonstrate transmissive P-B metasurfaces with stable amplitude and precise phase modulation. To ensure stable amplitude and precise P-B phase, we adopt a dartboard discretization configuration with a hexagonal lattice for the meta-atom design. By applying topology optimization to the encoding sequence formed by surface pixels and dimensions, we significantly enhancing the high transmissive bandwidth of the optimized meta-atom. Furthermore, the optimized meta-atom exhibits a stable amplitude and precise P-B phase for each rotation angle. As proof-of-concept demonstrations, two metasurfaces for single and multiplexed vortex beams generating are designed utilizing the optimized meta-atom. Both the simulated and measured results indicate high mode purity of generated vortex beams. The design method can also be readily extended to other high performance metasurfaces with stable amplitude and precise phase manipulations, which can enhance the efficiency and capacity of metasurface-assisted holographic imaging and 6 G wireless communication systems.

6.
Opt Express ; 31(17): 28444-28458, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710898

RESUMEN

In this paper, a hybrid mechanism metasurface (HMM) employing 1-bit random coding is proposed to achieve polarization-insensitive and dual-wideband monostatic/bistatic radar cross section (RCS) reduction under a wide range of incident angles. The anisotropic unit cell is designed by the combination of the multi-objective particle swarm optimization (MOPSO) algorithm and Python-CST joint simulation, which facilitates the rapid acquisition of the desired unit cell with excellent dual-band absorption conversion capability. The unit cell and its mirrored version are used to represent the units "0" and "1", respectively. In addition, the array distribution with random coding of the units "0" and "1" is optimized under different incident angles, polarizations and frequencies, which enables better diffusion-like scattering. Simulation results demonstrate that the proposed coding HMM can effectively reduce the monostatic/bistatic RCS by over 10 dB within the dual-band frequency ranges of 2.07-3.02 THz and 3.78-4.71 THz. Furthermore, the specular and bistatic RCS reduction performances remain stable at oblique incident angles up to 45° for both TE and TM polarizations.

7.
Plant Dis ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578363

RESUMEN

Black nightshade (Solanum nigrum) typically grows as a weed species, but it is also widely used as an herb to treat stomach ulcers and dermal infections in many countries (Jabamalairaj et al. 2019). In April 2023, extensive root galls similar to those associated with by root-knot nematodes (RKNs), Meloidogyne spp., were observed on the roots of black nightshade in several commercial fields in Lufeng county (22°55'57.44″N, 115°33'10.31″E), Guangdong Province, China. Upon inspection, there were one to several female RKN in each gall, and egg masses protruding through the root surface. The disease incidence rate was more than 90% in each field using the random sampling method. The nematode population densities in the samples ranged from 279 to 656 eggs and second-stage juveniles (J2s) per gram of fresh roots. Females and egg masses were collected from the roots, and egg masses were incubated in sterile water at 25°C to obtain J2s. Males were not collected in root galling or soil samples. The J2 tail is thin with a broad, bluntly pointed tip, and a clearly defined hyaline tail terminus. Measurements of J2 (n = 20) included: L= 440 ± 30.5 (384 to 500) µm, stylet = 12.3 ± 0.7 (11.3 to 13.7) µm, tail = 51.6 ± 2.4 (47.9 to 57.0) µm. For females (n = 15), vulval slit length = 25.5 ±1.9 (23.6 to 29.1) µm, vulval slit to anus distance = 22.1 ± 3.0 (18.2 to 27.0) µm. Stylet knobs in females are divided longitudinally by a groove so that each knob appears as two. The perineal patterns are round to ovoid, with coarse and smooth striae, moderate to high dorsal arch and mostly lacking distinct lateral lines. Morphological characteristics from J2s and perineal patterns from adult females fit the original description of M. enterolobii (Yang and Eisenback 1983). Furthermore, species identity was explored by sequencing the D2-D3 region of the 28S rRNA gene using primers D2A/D3B (Vrain et al. 1992), and the mtDNA cytochrome c oxidase I (COI) genes using primers JB3/JB5 (Derycke et al. 2005). The sequences for the target genes were 759 bp (GenBank Accession No. OR046056) and 447 bp (GenBank Accession No. OR042802), respectively. The BLAST analysis suggested 98.17~99.78% similarities to other available M. enterolobii sequences in GenBank. Species identity was further confirmed with the species-specific primer pair Me-F/Me-R (Long et al. 2006). An approximately 240 bp PCR product was produced, which was previously reported only for M. enterolobii, whereas no product was obtained from control populations of M. incognita or M. javanica. The pathogenicity test was conducted in a greenhouse at 28°C using seedlings of S. nigrum maintained in pots containing 500 cm3 sterilized soil. Ten replicates were inoculated with 800 eggs and J2s of the original population of M. enterolobii, while another 10 replicates of control plants were not inoculated. After 7 weeks, the inoculated plants exhibited galling symptoms similar to plants observed in the field, and females and egg masses were obtained by dissecting galls. No galling symptoms were observed on control plants. These results confirmed the nematode's pathogenicity. To our knowledge, this is the first record of M. enterolobii parasitizing black nightshade. M. enterolobii stands out as a highly deleterious variant among the species of RKNs owing to its extensive repertoire of host plants, pathogenicity, and proficiency in thriving and multiplying even on crops possessing resistance genes (Sikandar, 2022). In addition to being a medicinal plant, S. nigrum is a widespread weed found in fields throughout China. This report also showed that S. nigrum could play an important role as a reservoir host of M. enterolobii aiding its survival, reproduction, spread, and increasing the potential damage for host crops.

8.
Phys Rev Lett ; 130(20): 206401, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37267536

RESUMEN

Inverse Anderson transitions, where the flat-band localization is destroyed by disorder, have been wildly investigated in quantum and classical systems in the presence of Abelian gauge fields. Here, we report the first investigation on inverse Anderson transitions in the system with non-Abelian gauge fields. It is found that pseudospin-dependent localized and delocalized eigenstates coexist in the disordered non-Abelian Aharonov-Bohm cage, making inverse Anderson transitions depend on the relative phase of two internal pseudospins. Such an exotic phenomenon induced by the interplay between non-Abelian gauge fields and disorder has no Abelian analogy. Furthermore, we theoretically design and experimentally fabricate non-Abelian Aharonov-Bohm topolectrical circuits to observe the non-Abelian inverse Anderson transition. Through the direct measurements of frequency-dependent impedance responses and voltage dynamics, the pseudospin-dependent non-Abelian inverse Anderson transitions are observed. Our results establish the connection between inverse Anderson transitions and non-Abelian gauge fields, and thus comprise a new insight on the fundamental aspects of localization in disordered non-Abelian flat-band systems.

9.
Genes (Basel) ; 14(5)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37239329

RESUMEN

Sweetpotato (Ipomoea batatas) is an important root crop that is infected by Fusarium solani in both seedling and root stages, causing irregular black or brown disease spots and root rot and canker. This study aims to use RNA sequencing technology to investigate the dynamic changes in root transcriptome profiles between control check and roots at 6 h, 24 h, 3 days, and 5 days post-inoculation (hpi/dpi) with F. solani. The results showed that the defense reaction of sweetpotato could be divided into an early step (6 and 24 hpi) without symptoms and a late step to respond to F. solani infection (3 and 5 dpi). The differentially expressed genes (DEGs) in response to F. solani infection were enriched in the cellular component, biological process, and molecular function, with more DEGs in the biological process and molecular function than in the cellular component. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the main pathways were metabolic pathways, the biosynthesis of secondary metabolites, and carbon metabolism. More downregulated genes were identified than upregulated genes in the plant-pathogen interaction and transcription factors, which might be related to the degree of host resistance to F. solani. The findings of this study provide an important basis to further characterize the complex mechanisms of sweetpotato resistance against biotic stress and identify new candidate genes for increasing the resistance of sweetpotato.


Asunto(s)
Fusarium , Ipomoea batatas , Transcriptoma/genética , Ipomoea batatas/genética , Raíces de Plantas/genética , Fusarium/genética
10.
Sensors (Basel) ; 23(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37112177

RESUMEN

The detection and recognition of marine targets can be improved by utilizing the micro-motion induced by ocean waves. However, distinguishing and tracking overlapping targets is challenging when multiple extended targets overlap in the range dimension of the radar echo. In this paper, we propose a multi-pulse delay conjugate multiplication and layered tracking (MDCM-LT) algorithm for micro-motion trajectory tracking. The MDCM method is first applied to obtain the conjugate phase from the radar echo, which enables high-precision micro-motion extraction and overlapping state identification of extended targets. Then, the LT algorithm is proposed to track the sparse scattering points belonging to different extended targets. In our simulation, the root mean square errors of the distance and velocity trajectories were better than 0.277 m and 0.016 m/s, respectively. Our results demonstrate that the proposed method has the potential to improve the precision and reliability of marine target detection through radar.

11.
Adv Sci (Weinh) ; 10(19): e2301128, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37096835

RESUMEN

Electronic sensors play important roles in various applications, such as industry and environmental monitoring, biomedical sample ingredient analysis, wireless networks and so on. However, the sensitivity and robustness of current schemes are often limited by the low quality-factors of resonators and fabrication disorders. Hence, exploring new mechanisms of the electronic sensor with a high-level sensitivity and a strong robustness is of great significance. Here, a new way to design electronic sensors with superior performances based on exotic properties of non-Hermitian topological physics is proposed. Owing to the extreme boundary-sensitivity of non-Hermitian topological zero modes, the frequency shift induced by boundary perturbations can show an exponential growth trend with respect to the size of non-Hermitian topolectrical circuit sensors. Moreover, such an exponential growth sensitivity is also robust against disorders of circuit elements. Using designed non-Hermitian topolectrical circuit sensors, the ultrasensitive identification of the distance, rotation angle, and liquid level is further experimentally verified with the designed capacitive devices. The proposed non-Hermitian topolectrical circuit sensors can possess a wide range of applications in ultrasensitive environmental monitoring and show an exciting prospect for next-generation sensing technologies.

12.
Nat Commun ; 14(1): 1083, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841813

RESUMEN

Topological band theory establishes a standardized framework for classifying different types of topological matters. Recent investigations have shown that hyperbolic lattices in non-Euclidean space can also be characterized by hyperbolic Bloch theorem. This theory promotes the investigation of hyperbolic band topology, where hyperbolic topological band insulators protected by first Chern numbers have been proposed. Here, we report a new finding on the construction of hyperbolic topological band insulators with a vanished first Chern number but a non-trivial second Chern number. Our model possesses the non-abelian translational symmetry of {8,8} hyperbolic tiling. By engineering intercell couplings and onsite potentials of sublattices in each unit cell, the non-trivial bandgaps with quantized second Chern numbers can appear. In experiments, we fabricate two types of finite hyperbolic circuit networks with periodic boundary conditions and partially open boundary conditions to detect hyperbolic topological band insulators. Our work suggests a new way to engineer hyperbolic topological states with higher-order topological invariants.

13.
Opt Express ; 30(25): 45612-45623, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522964

RESUMEN

Metasurface provides an unprecedented means to manipulate electromagnetic waves within a two-dimensional planar structure. Traditionally, the design of meta-atom follows the pattern-to-phase paradigm, which requires a time-consuming brute-forcing process. In this work, we present a fast inverse meta-atom design method for the phase-to-pattern mapping by combining the deep neural network (DNN) and genetic algorithm (GA). The trained classification DNN with an accuracy of 92% controls the population generated by the GA within an arbitrary preset small phase range, which could greatly enhance the optimization efficiency with less iterations and a higher accuracy. As proof-of-concept demonstrations, two reflective functional metasurfaces including an orbital angular momentum generator and a metalens have been numerically investigated. The simulated results agree very well with the design goals. In addition, the metalens is also experimentally validated. The proposed method could pave a new avenue for the fast design of the meta-atoms and functional meta-devices.

14.
Opt Express ; 30(23): 41340-41349, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366614

RESUMEN

Metasurfaces offer an unprecedented opportunity for flexible manipulation of electromagnetic wave. The azimuth-rotation-independent (ARI) polarization conversion metasurface (PCM) is an ultrathin device, which could convert an arbitrary linearly-polarized incident wave to its cross-polarized state. However, the bandwidth of an ARI PCM with a high cross-polarized transmission is usually limited. Here, a topology optimization method of multi-feature points based on the differential evolution (DE) algorithm is adopted to enhance the bandwidth of the traditional ARI PCM while maintaining a high transmission and polarization conversion ratio. The simulated results of the optimized structure indicate a 2.08 times bandwidth expansion in the cross-polarization conversion compared with the original structure. In addition, the measured results are consistent with the simulated ones and the ARI characteristic is validated. The proposed method provides a promising route for efficient high-performance metasurface designs.

15.
Mol Cell Probes ; 65: 101846, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35840109

RESUMEN

The disease co-infected by Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) is devastating in sweet potato, as it would give rise to the serious losses in both production and quality. Consequently, it is conducive for preventing and controlling this disease to detect these two viruses accurately and timely. Here we developed and optimized a dual reverse transcription recombinase polymerase amplification (RT-RPA) for rapid and accurate detection of SPFMV and SPCSV. Four special primers were designed based on the conserved sequences of SPFMV and SPCSV, respectively. The sensitivity of dual RT-RPA for SPFMV and SPCSV was 10-4 ng/µL at the optimal conditions in which the primer ratio between SPFMV and SPCSV was 2:1, and the reaction incubated for 25 min at a temperature of 39 °C. Both 61 sweet potato samples and 5 morning glory samples collected from China were tested using the dual RT-RPA successfully. Therefore, the dual RT-RPA is a reliable, rapid, sensitive method to detect these two viruses in sweet potato. It is the RT-RPA that was used for detection of SPFMV and SPCSV simultaneously firstly. This dual RT-RPA, as a convenient and powerful tool, will be useful to diagnose SPFMV and SPCSV.


Asunto(s)
Ipomoea batatas , Potyvirus , China , Enfermedades de las Plantas , Potyvirus/genética
16.
Nat Commun ; 13(1): 2937, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618723

RESUMEN

The discovery of novel topological states has served as a major branch in physics and material sciences. To date, most of the established topological states have been employed in Euclidean systems. Recently, the experimental realization of the hyperbolic lattice, which is the regular tessellation in non-Euclidean space with a constant negative curvature, has attracted much attention. Here, we demonstrate both in theory and experiment that exotic topological states can exist in engineered hyperbolic lattices with unique properties compared to their Euclidean counterparts. Based on the extended Haldane model, the boundary-dominated first-order Chern edge state with a nontrivial real-space Chern number is achieved. Furthermore, we show that the fractal-like midgap higher-order zero modes appear in deformed hyperbolic lattices, and the number of zero modes increases exponentially with the lattice size. These novel topological states are observed in designed hyperbolic circuit networks by measuring site-resolved impedance responses and dynamics of voltage packets. Our findings suggest a useful platform to study topological phases beyond Euclidean space, and may have potential applications in the field of high-efficient topological devices, such as topological lasers, with enhanced edge responses.

17.
Nat Commun ; 13(1): 2392, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501305

RESUMEN

Bloch oscillations are exotic phenomena describing the periodic motion of a wave packet subjected to an external force in a lattice, where a system possessing single or multiple particles could exhibit distinct oscillation behaviors. In particular, it has been pointed out that quantum statistics could dramatically affect the Bloch oscillation even in the absence of particle interactions, where the oscillation frequency of two pseudofermions with an anyonic statistical angle of [Formula: see text] becomes half of that for two bosons. However, these statistically dependent Bloch oscillations have never been observed in experiments until now. Here, we report the experimental simulation of anyonic Bloch oscillations using electric circuits. By mapping the eigenstates of two anyons to the modes of the designed circuit simulators, the Bloch oscillations of two bosons and two pseudofermions are verified by measuring the voltage dynamics. The oscillation period in the two-boson simulator is almost twice of that in the two-pseudofermion simulator, that is consistent with the theoretical prediction. Our proposal provides a flexible platform to investigate and visualize many interesting phenomena related to particle statistics and could have potential applications in the field of the signal control.

18.
Micromachines (Basel) ; 13(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35630184

RESUMEN

In the recent era, fifth-generation technology (5G) has not been fully implemented in the realm of wireless communication. To have excellent accessible bandwidth feasibility, and in order to achieve the aims of 5G standards, such as higher data rates and ultrahigh-definition video streaming, the millimeter wave (mmWave) band must be employed. Services with minimal latency and many other features are feasible only in the mmWave spectrum. To avoid numerous communication complexities such as high connection losses, short wavelength, and restricted bandwidth, as well as path-loss challenges in the mmWave range, an antenna with wide bandwidth, high gain, narrow steerable beam, high isolation, low side-lobe levels, and multiband features is required to alleviate these difficulties and meet 5G communication standards. To overcome these challenges, specific strategies and techniques should be employed in the traditional antenna designing procedure to excellently improve the performance of the antenna in terms of bandwidth, gain, and efficiency and to reduce the mutual coupling effect between the closely colocated antenna elements in MIMOs and arrays. The researchers reported on a variety of bandwidth and gain improvement approaches. To gain broader coverage, traditional antenna design techniques must be modified. In this study, the latest state-of-the-art work is reviewed, such as the role of the metamaterials (MMTs), parasitic patches, hybrid feeding, EBG structure, impact of the slots with different geometrical shapes in the radiator to achieve the goal of wide bandwidth, boosted gain, reduced side-lobes level, as well as stable radiation properties. Mutual coupling reduction techniques are also briefly reported. The role of reconfigurability is focused on in this study, and at the end, the future challenges in the field of antenna design and possible remedies to such issues are reviewed.

19.
Nat Commun ; 12(1): 7201, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893589

RESUMEN

Robust boundary states epitomize how deep physics can give rise to concrete experimental signatures with technological promise. Of late, much attention has focused on two distinct mechanisms for boundary robustness-topological protection, as well as the non-Hermitian skin effect. In this work, we report the experimental realizations of hybrid higher-order skin-topological effect, in which the skin effect selectively acts only on the topological boundary modes, not the bulk modes. Our experiments, which are performed on specially designed non-reciprocal 2D and 3D topolectrical circuit lattices, showcases how non-reciprocal pumping and topological localization dynamically interplays to form various states like 2D skin-topological, 3D skin-topological-topological hybrid states, as well as 2D and 3D higher-order non-Hermitian skin states. Realized through our highly versatile and scalable circuit platform, theses states have no Hermitian nor lower-dimensional analog, and pave the way for applications in topological switching and sensing through the simultaneous non-trivial interplay of skin and topological boundary localizations.

20.
Opt Express ; 29(16): 26210-26219, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614931

RESUMEN

The rotational Doppler effect caused by vortex beam carrying orbital angular momentum is recently used to estimate the rotational velocity of the object. However, the vortex beam only has the spiral phase distribution in one dimension, which means that only the rotational movement of the object would introduce the frequency shift. Also, the vortex beam has a spatial amplitude distribution of doughnut-shaped, which is not suitable for many application scenarios. To simultaneously measure the velocity of an arbitrary three-dimensional moving object, we propose theoretically and demonstrate experimentally an effective method by constructing a novel modulated field. Different from the plane wave and the vortex beam, the modulated field has linear phase distribution in azimuth and elevation directions. In addition, the modulated field has the maximal radiation intensity in the center, which avoids the beam divergence of the vortex beam. By decomposing the frequency shift caused by the radial, azimuth and elevation movements, we realize the velocity measurement in three dimensions. Experiments in a microwave system show that the estimated velocity errors are lower than 6.0%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...